IACHEC XVI : 12-16 May 2024 : Parador de la Granja

On Pileup in Chandra/ACIS

Vinay Kashyap (CXC/CfA)

IACHEC XVI : 12-16 May 2024 : Parador de la Granja

On Pileup in *Chandra*/ACIS Two approaches to improve spectral fitting

Vinay Kashyap (CXC/CfA) Justina Yang (Harvard), Hector McKimm (Imperial), Daniela Huppenkothen (SRON), David van Dyk (Imperial), Rafael Martinez-Galarza (CXC/CfA), Diab Jerius (CXC/CfA), Terry Gaetz (CXC/CfA), Doug Finkbeiner (Harvard), Aneta Siemiginowska (CXC/CfA)

Pileup: Context

- * If two or more photons arrive at the same detector pixel within the same frame time, they are read out as one photon with their energies compounded
- For ACIS, this begins to happen at count rates of ≈0.05 ct/frame. When this starts happening, the grade fractions change, with more bad grades and more instances of complex good grades
- * XMM-Newton EPIC starts showing pileup effects at \approx 5-50× the detector count rate
- * AXIS threshold is similar, ≈7 ct/s, equivalent to a moderately bright source like AR Lac
- Even the Athena / WFI uses defocusing to get to 1% pileup for 1 Crab at 80% throughput (Meidinger et al. 2018)

bîn=0.25 pîx

5	pileup experiments with ACIS		
		I	1
	00741 $\tau = 0.441 \text{s} \text{ N}_{\text{ROW}} = 128$	ct/s=0.298	θ=3.9
	06154 $\tau = 0.441 \text{s} \text{ N}_{\text{ROW}} = 101$	ct/s=0.238	θ=0.3
	06155 $\tau = 3.041 \text{s N}_{R0W} = 1024$	ct/s=0,168	θ=0.3
	$06156 \ \tau = 1.541 \text{s N}_{ROW} = 512$	ct/s=0.201	∂=0 .3
	06157 $\tau = 0.441 \text{s} \text{ N}_{\text{ROW}} = 101$	ct/s=0.228	θ=3.6
	06158 τ =10,041s N _{R0W} =1024 (ct/s=0.071	θ=0.3
	06767 $\tau = 0.241 \text{s} \text{ N}_{\text{ROW}} = 101$	ct/s=0.239	θ=0.3
	06768 τ=0.241s N _{ROW} =101 (ct/s=0.247	θ =0.4
	07216 $\tau = 6.041 \text{s}$ N _{ROW} =1024	ct/s=0,115	θ=0,4

Bitwise grade assignments

32	64	128
8	0	16
1	2	4

Chandra POG Fig 6.21 and Table 6.6

Ħ		Ĥ				É							13	14	
			19	20	21		23		25	26	27	28	29	30	
	33	34	35	36	37	36	39	40	41	42	43		45	46	
48	49		51	52	53	54	55	56	57	56	59		61	62	
1	65	66	67	68	69	70	71	72	73	74	75	76	77	78	
50	8 1	82	83	84	85	86	87	86	89	90	91	92	93	94	
96	97	98	99	100	101	102	103	104	105	106	107		109	110	1
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	1
128	129	130	131	132	133	134	135	136	137	1.39	139	140	141	142	1
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	1
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	1
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	2
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	2
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	2

Davis 2001 (ApJ 562, 575); Davis 2003 (ProcSPIE 4851, 101)

Grade Migration : The John Davis Model

The probability of *n* photons with good grades piling up yet resulting in a good grade: *αⁿ⁻¹*

AHELP for CIAO 4.16 Sherpa

set_pileup_model

Context: modeling

Synopsis

Include a model of the Chandra ACIS pile up when fitting PHA data.

Syntax

set_pileup_model(id, model=None)

id - int or str, optional
model - an instance of the jdpileup class

Description

Chandra observations of bright sources can be affected by pileup, so that there is a non-linear correlation between the source model and the predicted counts. This process can be modelled by including the `jdpileup` model for a data set, using the `set_pileup_model`.

https://cxc.cfa.harvard.edu/ciao/download/doc/pileup_abc.pdf https://cxc.cfa.harvard.edu/sherpa/ahelp/set_pileup_model.html https://cxc.cfa.harvard.edu/sherpa/threads/pileup/

pileup: CCD pile-up model for Chandra

CCD pile-up model used for brightish point sources observed by Chandra. This is an implementation of the fast pile-up algorithm proposed by John Davis (see http://space.mit.edu/~davis/papers/pileup2001.pdf). The frame time and maximum number of photons to pile up should be fixed. The grade morphing is expressed through a single parameter, alpha, which should be left as a free parameter. This model should be considered in beta test. Note that to calculate fluxes etc. for the model you must remove the pileup component. The pile-up model is similar to the operation of the convolution models, differing only in the treatment of the detector efficiency during the convolution. Note that renorm will not work with pileup since increasing the normalization does not linearly increase the predicted count rate. Therefore you should set renorm none prior to doing a fit with pileup.

par1	frame time (in seconds)
par2	maximum number of photons to pile up
par3	grade correction for single photon detection
par4	grade morphing parameter (good grade fraction is assumed proportional to par4 $(p-1)$ where p is the number of piled photons)
par5	PSF fraction. Only this fraction will be treated for pile-up. Note that this is not the fraction of the PSF included in the extraction region but is the fraction of counts in the region which are from the point source whose pile-up is being modeled. For this model to work well the extraction region should be large enough to contain essentially all the PSF.
par6	Number of regions. The counts to be piled-up will be distributed among par6 regions, which will be piled-up independently.
par7	Value of FRACEXPO keyword in ARF.

https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelPileup.html

Davis 2001 (ApJ 562, 575); Davis 2003 (ProcSPIE 4851, 101)

Grade Migration: The John Davis Model

- good grade: α^{n-1}
- * Limitations:
 - * ad hoc, with no connection to a likelihood
 - * does not work well for large pileup fractions
 - * does not use bad grade data
 - * does not account for PSF shape

* The probability of *n* photons with good grades piling up yet resulting in a

McKimm et al. 2024 (in prep)

McKimm et al. 2024 (in prep)

Yang et al. 2024 (HEAD 21, 107.04)

* What kind of process leads to pileup in <your> detector

* What kind of process leads to pileup in *<your>* detector * What is your strategy for dealing with pileup?

- * What kind of process leads to pileup in <your> detector
- * What is your strategy for dealing with pileup?
- * At what count rate does pileup (or some form of non-linearity) become important?

- * What kind of process leads to pileup in <your> detector
- * What is your strategy for dealing with pileup?
- * At what count rate does pileup (or some form of non-linearity) become important?
- * What modifications should we make to our Bayesian model to handle specific cases?