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Pileup: Context
❖ If two or more photons arrive at the same detector pixel within the same frame time, 

they are read out as one photon with their energies compounded

❖ For ACIS, this begins to happen at count rates of ≈0.05 ct/frame.  When this starts 
happening, the grade fractions change, with more bad grades and more instances of 
complex good grades

❖ XMM-Newton EPIC starts showing pileup effects at ≈5-50× the detector count rate

❖ AXIS threshold is similar, ≈7 ct/s, equivalent to a moderately bright source like AR Lac

❖ Even the Athena/WFI uses defocusing to get to 1% pileup for 1 Crab at 80% 
throughput (Meidinger et al. 2018)
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Bitwise grade assignments
Chandra POG Fig 6.21 and Table 6.6



Grade Migration : The John Davis Model
❖ The probability of n photons with good grades piling up yet resulting in a 

good grade: αn-1

Davis 2001 (ApJ 562, 575); Davis 2003 (ProcSPIE 4851, 101)

https://cxc.cfa.harvard.edu/ciao/download/doc/pileup_abc.pdf   
https://cxc.cfa.harvard.edu/sherpa/ahelp/set_pileup_model.html  
https://cxc.cfa.harvard.edu/sherpa/threads/pileup/  

https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelPileup.html 
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Grade Migration: The John Davis Model
❖ The probability of n photons with good grades piling up yet resulting in a 

good grade: αn-1

❖ Limitations:

❖ ad hoc, with no connection to a likelihood

❖ does not work well for large pileup fractions

❖ does not use bad grade data

❖ does not account for PSF shape 

Davis 2001 (ApJ 562, 575); Davis 2003 (ProcSPIE 4851, 101)
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Hierarchical Bayesian Modeling
McKimm et al. 2024 (in prep)
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Hierarchical Bayesian Modeling
spectral model parameters 

Pr(good grade) Pr(bad grade)

Good grades

Bad grades Null events

McKimm et al. 2024 (in prep)
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compute expected counts and write likelihood as Poisson for each case9



Learning pileup from simulations and data
Yang et al. 2024 (HEAD 21, 107.04)
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11



Yo quiero saber.. I want to know

❖ What kind of process leads to pileup in <your> detector

11



Yo quiero saber.. I want to know

❖ What kind of process leads to pileup in <your> detector

❖ What is your strategy for dealing with pileup?

11



Yo quiero saber.. I want to know

❖ What kind of process leads to pileup in <your> detector

❖ What is your strategy for dealing with pileup?

❖ At what count rate does pileup (or some form of non-linearity) become 
important?

11



Yo quiero saber.. I want to know

❖ What kind of process leads to pileup in <your> detector

❖ What is your strategy for dealing with pileup?

❖ At what count rate does pileup (or some form of non-linearity) become 
important?

❖ What modifications should we make to our Bayesian model to handle 
specific cases?
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